We propose Panoptic Lifting, a novel approach for learning panoptic 3D volumetric representations from images of in-the-wild scenes. Once trained, our model can render color images together with 3D-consistent panoptic segmentation from novel viewpoints. Unlike existing approaches which use 3D input directly or indirectly, our method requires only machine-generated 2D panoptic segmentation masks inferred from a pre-trained network. Our core contribution is a panoptic lifting scheme based on a neural field representation that generates a unified and multi-view consistent, 3D panoptic representation of the scene. To account for inconsistencies of 2D instance identifiers across views, we solve a linear assignment with a cost based on the model's current predictions and the machine-generated segmentation masks, thus enabling us to lift 2D instances to 3D in a consistent way. We further propose and ablate contributions that make our method more robust to noisy, machine-generated labels, including test-time augmentations for confidence estimates, segment consistency loss, bounded segmentation fields, and gradient stopping. Experimental results validate our approach on the challenging Hypersim, Replica, and ScanNet datasets, improving by 8.4, 13.8, and 10.6% in scene-level PQ over state of the art.
translated by 谷歌翻译
We introduce DiffRF, a novel approach for 3D radiance field synthesis based on denoising diffusion probabilistic models. While existing diffusion-based methods operate on images, latent codes, or point cloud data, we are the first to directly generate volumetric radiance fields. To this end, we propose a 3D denoising model which directly operates on an explicit voxel grid representation. However, as radiance fields generated from a set of posed images can be ambiguous and contain artifacts, obtaining ground truth radiance field samples is non-trivial. We address this challenge by pairing the denoising formulation with a rendering loss, enabling our model to learn a deviated prior that favours good image quality instead of trying to replicate fitting errors like floating artifacts. In contrast to 2D-diffusion models, our model learns multi-view consistent priors, enabling free-view synthesis and accurate shape generation. Compared to 3D GANs, our diffusion-based approach naturally enables conditional generation such as masked completion or single-view 3D synthesis at inference time.
translated by 谷歌翻译
Quantum computing (QC) promises significant advantages on certain hard computational tasks over classical computers. However, current quantum hardware, also known as noisy intermediate-scale quantum computers (NISQ), are still unable to carry out computations faithfully mainly because of the lack of quantum error correction (QEC) capability. A significant amount of theoretical studies have provided various types of QEC codes; one of the notable topological codes is the surface code, and its features, such as the requirement of only nearest-neighboring two-qubit control gates and a large error threshold, make it a leading candidate for scalable quantum computation. Recent developments of machine learning (ML)-based techniques especially the reinforcement learning (RL) methods have been applied to the decoding problem and have already made certain progress. Nevertheless, the device noise pattern may change over time, making trained decoder models ineffective. In this paper, we propose a continual reinforcement learning method to address these decoding challenges. Specifically, we implement double deep Q-learning with probabilistic policy reuse (DDQN-PPR) model to learn surface code decoding strategies for quantum environments with varying noise patterns. Through numerical simulations, we show that the proposed DDQN-PPR model can significantly reduce the computational complexity. Moreover, increasing the number of trained policies can further improve the agent's performance. Our results open a way to build more capable RL agents which can leverage previously gained knowledge to tackle QEC challenges.
translated by 谷歌翻译
现有的自我监督学习策略被限制在有限的目标或主要针对单峰应用程序的通用下游任务。对于复杂性和域亲和力(例如模因分析)而言,这对命令性的多模式应用有了孤立的进展。在这里,我们介绍了两种自我监督的预训练方法,即ext-pie-net和mm-simclr(i)在预训练期间使用现成的多模式仇恨语音数据,并且(ii)执行自我 - 通过合并多个专业借口任务,有效地迎合模因分析所需的复杂多模式表示学习,从而有效地迎合了学习。我们实验不同的自我实验策略,包括可以帮助学习丰富的跨模式表示并使用流行的线性探测来评估可恨模因任务的潜在变体。拟议的解决方案通过标签有效的培训与完全监督的基线竞争,同时在梅诺特挑战的所有三个任务上明显优于他们,分别为0.18%,23.64%和0.93%的绩效增长。此外,我们通过在Harmeme任务上报告竞争性能来证明所提出的解决方案的普遍性。最后,我们通过分析特定于任务的学习,使用更少的标记培训样本来建立学习表现的质量,并争辩说,自主策略和手头下游任务的复杂性是相关的。我们的努力强调了更好的多模式自学方法的要求,涉及有效的微调和可推广性能的专业借口任务。
translated by 谷歌翻译
现代机器学习研究依赖于相对较少的精心策划数据集。即使在这些数据集中,通常在“不整合”或原始数据中,从业人员也面临着重要的数据质量和多样性问题,这些问题可能会非常强烈地解决。应对这些挑战的现有方法往往会对特定问题做出强烈的假设,并且通常需要先验知识或元数据,例如域标签。我们的工作与这些方法是正交的:相反,我们专注于为元数据考古学提供一个统一和有效的框架 - 在数据集中发现和推断示例的元数据。我们使用简单的转换策划了可能存在的数据集(例如,错误标记,非典型或过度分布示例)中可能存在的数据子集,并利用这些探针套件之间的学习动力学差异来推断感兴趣的元数据。我们的方法与跨不同任务的更复杂的缓解方法相提并论:识别和纠正标签错误的示例,对少数民族样本进行分类,优先考虑与培训相关的点并启用相关示例的可扩展人类审核。
translated by 谷歌翻译
我们介绍了一种新颖的方法,用于使用时间戳监督进行时间戳分割。我们的主要贡献是图形卷积网络,该网络以端到端方式学习,以利用相邻帧之间的帧功能和连接,以从稀疏的时间戳标签中生成密集的框架标签。然后可以使用生成的密集框架标签来训练分割模型。此外,我们为分割模型和图形卷积模型进行交替学习的框架,该模型首先初始化,然后迭代地完善学习模型。在四个公共数据集上进行了详细的实验,包括50种沙拉,GTEA,早餐和桌面组件,表明我们的方法优于多层感知器基线,同时在时间活动中表现出色或更好地表现出色或更好在时间戳监督下。
translated by 谷歌翻译
人们普遍认为,人类视觉系统偏向于识别形状而不是纹理。这一假设导致了越来越多的工作,旨在使深层模型的决策过程与人类视野的基本特性保持一致。人们对形状特征的依赖主要预计会改善协变量转移下这些模型的鲁棒性。在本文中,我们重新审视了形状偏置对皮肤病变图像分类的重要性。我们的分析表明,不同的皮肤病变数据集对单个图像特征表现出不同的偏见。有趣的是,尽管深层提取器倾向于学习对皮肤病变分类的纠缠特征,但仍然可以从该纠缠的表示形式中解码单个特征。这表明这些功能仍在模型的学习嵌入空间中表示,但不用于分类。此外,不同数据集的光谱分析表明,与常见的视觉识别相反,皮肤皮肤病变分类本质上依赖于超出形状偏置的复杂特征组合。自然的结果,在某些情况下,摆脱了形状偏见模型的普遍欲望甚至可以改善皮肤病变分类器。
translated by 谷歌翻译
ML音乐型号的出现诸如Google Magenta的Musicvae现在允许我们从其他数据集中提取和复制组成功能。这些模型允许计算作曲器参数化抽象变量,如风格和情绪。通过利用这些模型并将它们与过程算法与过去几十年来组合,可以创建一个动态歌曲,该歌曲实时组成音乐以伴随互动体验。Malakai是一种工具,可以帮助用户产生不同的技能级别创建,收听,混音并分享此类动态歌曲。使用Malakai,作曲家可以创建一个可以由侦听器互动的动态歌曲
translated by 谷歌翻译